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Abstract: In this talk we shall discuss algorithms and CAD tools for the design and

analysis of structures for high performance applications using advanced composite

materials. An extensive mathematical theory for optimal structural (e.g., shape) design

has been developed over the past thirty years. Aspects of this theory have been used

in the design of components for hypersonic vehicles and thermal diffusion systems

based on homogeneous materials. Enhancement of the design methods to include

optimization of the microstructure of the component is a significant innovation which
can lead to major enhancements in component performance. Our work is focused on

the adaptation of existing theories of optimal structural design, e.g., optimal shape

design, to treat the design of structures using advanced composite materials, e.g.,
fiber reinforced, resin matrix materials. In this talk we shall discuss models and

algorithms for the design of simple structures from composite materials, focussing on

a problem in thermal management. We shall also discuss methods for the integration
of active structural controls into the design process.
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Problem: Integrated design of structures, their

materials, and embedded active controls

Issues:

1. Shape optimization

2. Material analysis and design

3. Actuator design and placement

Shape Design: Find shape of an object to

optimize a design criterion and satisfy design

constraints.

Abstract Formulation:

• _ C R n the object shape

• A(u,_) =0 defines u(_) 6R m, • E _Z

• Given f(=,£Z) a real-valued function

Optimal Shape Design Problem:

_n_{f(_, n), A(_,n) = o}
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Two essential problems:

1. Select the topology for the structure (cylin-

drical, rectangular, etc.); and

2. Within the designated topology find the

best shape.

Remarks:

• The first problem is very difficult; e.g., in-

troduction of internal holes in a structure

to reduce the weight without violating de-

sign constraints

• The second problem (initial and final topolo-

gies are the same) can usually be treated

by gradient methods.

Example: Optimal Compliance Design of an

Elastic Structure

Problem: Design an elastic structure contain-

ing a large number of "cells" in a continuous

array; e.g., fiber reinforced structure.

Remark: If the array is locally periodic, the

macroscopic moduli may be computed using

homogenization theory.

Design Parameters: dimensions (a,b) and ori-

entation 9 of the microscopic elements.
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Design Parameters

t--a

T
b

. :_.:_.:_..._:.:._:.:::.:.::_::s.::.::...,:.:.,:..,.,._.,.._._i]

I L I

Design Algorithm:

!. Use homogenization to compute the local

effective elasticity tensor E/_(=, (a, b, c, 0)).

2. Compute gradient of performance func-

tion

3. Steepest descent on design parameters
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Matrix

Heterogeneous Structure

i

?k --

I--- _,,

f_

( i,

Fiber --,-f- -

Effective Parameter Model:

"EfFective" elasticity tensor EH(m) may be

computed using homogenization theory.

1. Solve cell problem

t E, OX_z) O_'i

i,j,rn,n=l/y ijrnn Oy n oyjdY =

2

i,j,m,n=l J Oyj

for the characteristic deformation X_ t)

2. Compute the homogenized elasticity ten-
5or

Eijkl_ Eijk£ -- Eijmn dY
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Displacement Model: Assume smooth varia-

tion across structure.

2
EE,( a,b,O) ( = __j_l , ,= Z E_KLR_Z[O(=)]'

IJKL=I

Rjj[O( x )]RkK[O( _r)]RtL[O( _:) ]

R[O(=)]-'- [ c°sOsinO-sinO]cosO

is the (local) rotation matrix.

Macroscopic Behavior: (For each ® = (a, b, 0))

2

_-' Jn _ijkl _=lo=t o=j
ijkl-_. 1

2 2

-- E /_q fiuldf2 + E/[- "i_'idC
i=1 i=1 r

fi, i = 1, 2 are the applied body forces in gZ,

rj,j -- 1,2 are the tractions applied on the

boundary I-r C I- -- 0_z.
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Optimal Compliance Design

2 [ ,_H,Q, _Ouk Cgui ,,-.

{®=(a'b'O)}i] =1 oz lozj

subject to the constraint (*) and

f_(1 - < In_la(z)b(z))dn

_F = the maximum volume fraction allocat-

ed to the reinforcing material.

Using a penalty method, the optimization prob-

lem is approximated by

max min Fl'(v)
® vEV

where 13_(v) is the total potential energy

1 2

J_ J " Uz l Oxj

1 2 1

+ 2 i_l /F D Y(Vi - gi)2dF

2 2

71



Introduce the Lagrangian

c = n' - x(/n(i - _b)an - nF)

where A < 0 is a Lagrange multiplier.

Taking the variation of £: with respect to u

and the design variables ® = (a,b,O) gives

the optimality conditions:

[aEH'® ]

2 1 I "_jkz a,,k a,,i

VEa=a*-a, O<a* < I 6CZ

Optimality conditions:

I1 ijkZ O_k O_i

a=min max O,a-pa_k _ _ OztOzJ _Ab

{[ ,o,,,o )]_i ijkl OtLkO_i

b=min m_x o,b-p_\{ g _+_,_

A = min{ O,A- #,_ (f_(l -ab)d_- _p) }

OEH, ®
1 iikt Ouk Oui

--0
2 O0 Oz t Ozj

for arbitrary positive numbers Pa, Pb, P),
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Example: Optimal design of a thermal diffus-

er using composites

Problem: Select the shape E_ of the diffus-

er and the parameterization ® of _y (vol-

ume fraction, orientation, packing, etc.) of

the material infrastructure to minimize the

weight of the diffuser and meet operational

objectives.

(i) the maximum temperature at the payload

- diffuser interface must not exceed :Tin;

(ii) no part of the diffuser can be thinner than

some constant d; and

(iii) for convective cooling, the flux on the

transmission interface of the diffuser must be

below qm.

Composite Material Thermal Diffuser

Constant
Fibers I x2

,, temperature

!

L

i
i
i

..... R(z)
I

,"--- _ Adiabatic
[ , -

i i Surface

t t t t t x !
, i : Flux

x 3
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Model:

Assume: Conductivity of the fiber material is

k, conductivity of the matrix material is K

(could be anisotropic)

Conductivity tensor: {a_(z, y, z), i, j -- 1,2, 3}

a f o( ,aTe_o,,k°,j =0
with the boundary conditions

aT® -- qi. on El; aT8 -- 0 on _-'2

O_la® a_la®

aT® Jr t_(T®) p qs on 7" 3
O_la®

O/arla® is the conormal derivative at the sur-

face.

Design Parameters: _), the fiber orientation

and packing, and R(z),O <_ z <_ L the curve

defining the shape of the boundary, and L.

Performance Index: Mass of diffuser

n(®,a(.),L) = . _oS/ fc(.)P®(z,,,z) R(z)2d.d''z

p®(z,y,z) is the mass density in a cross sec-

tion O(z).

The optimal design problem is

min n(®, R(.), n)
®,R(.),L
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Homogenization." (local)

Effective Conductivity:

f oxJ_

Macroscopic Behavior:

02u0& .4,,= -%_--_--= f
v_ia_,j

"Corrector:"

--a-_yi _ij(u) x j -
o_ii(y)

Oyi

Optimal Design:

Adjoin constraints to performance function:

FI#(®, R(.), L)(v) = FI(®, R(.), L)

2

i]=l iO_J d_

1 _I 1 _ (v-g) 2dV+2i= _- 2

_ > 0 is a small parameter.
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Define the Lagrangian:

z(,,, ®, R(.), L, ^) = n_(_)

--^[ f_Y pFdzedydz - ME]

Lagrange multiplier A _<O.

Optimality Criteria."

Obtained from variation of £ with respect to

state u and design variables (®, R(.), L).
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